### Propriedades da madeira

# 1. Propriedades físicas

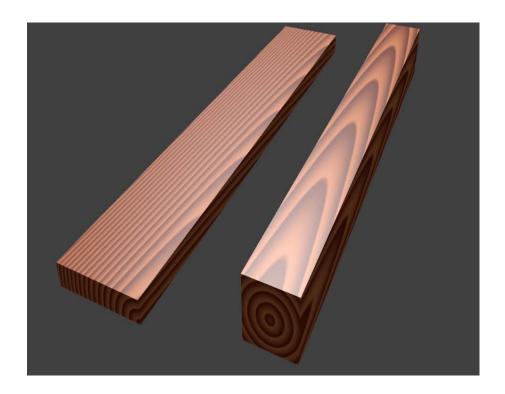
Prof. Dr. Umberto Klock Curso de Engenharia Industrial Madeireira

# Propriedades físicas

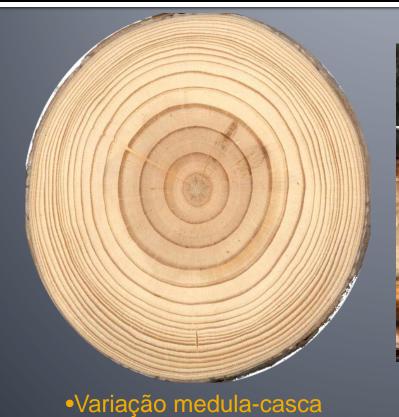


# Objetivos

- Conhecer as propriedades da madeira:
- Propriedades físicas.
- Densidade da madeira.
- Contração e inchamento


# INTRODUÇÂO

- A utilização intensiva da madeira como matériaprima para fins industriais ou construtivos só pode ocorrer a partir do conhecimento adequado de suas propriedades.
- Por ser um elemento orgânico heterogêneo, composto basicamente de celulose, hemiceluloses, lignina e extrativos, apresenta uma versatilidade enorme de usos para obtenção de uma grande quantidade de produtos.


- O aprimoramento no emprego de novas tecnologias para transformação e uso racional da madeira na geração de novos produtos, requer o conhecimento adequado de suas características e comportamento como matéria-prima.
- Sendo um recurso natural renovável, de suprimento praticamente inesgotável, continuará tendo possibilidade de utilização infindáveis.

# Variações da madeira no tronco





# Variações da madeira no tronco





Variação base topo









### Questões?

- De que forma poderemos valorizar a utilização da madeira?
- Como os futuros engenheiros industriais madeireiros poderão contribuir com o desenvolvimento da Indústria Madeireira?

# Trabalho prático: (Equipes)

- Ir a um supermercado da cidade e relacionar produtos produzidos a partir da madeira:
- Se possível identificar qual a madeira utilizada e quais propriedades que seriam importantes naquele produto.
- Data de entrega: ATÉ 28/05/2012

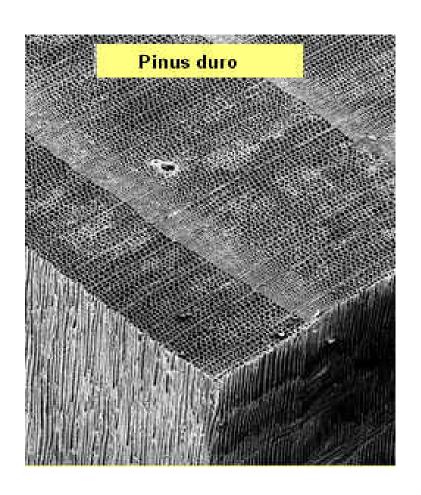
# Densidade da Madeira (Massa específica)

A massa específica é uma das propriedades físicas mais importantes da madeira porque esta relacionada diretamente com propriedades como resistência mecânica, grau de alteração dimensional e perda ou absorção de água.

 Dela dependem a maior parte das qualidades físicas e tecnológicas, servindo na prática como parâmetro para classificação de madeiras.

 A densidade (massa específica) expressa a quantidade de matéria lenhosa por unidade de volume, ou do volume de espaços vazios existentes em uma madeira.

Onde:


$$\rho = m \div v$$

- $\rho$  = densidade
- m = massa
- V = volume

No Sistema Internacional, a massa é medida em kg e o volume, em m<sup>3</sup>. Assim:

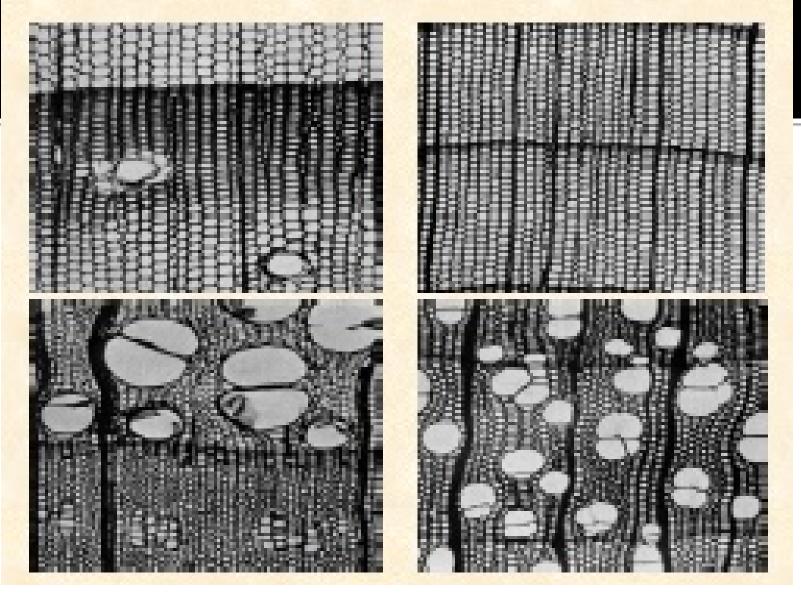
$$\rho = m.v^{-3}$$

Outras unidades utilizadas são o g.cm<sup>-3</sup> e g.l<sup>-1</sup>



### Densidade da Madeira - tipos

### Densidade Aparente


A Densidade é influenciada pelo teor de umidade da madeira, assim esta relacionada com este teor:

$$\rho_{0\%} = m_{0\%} \div v_{0\%}$$

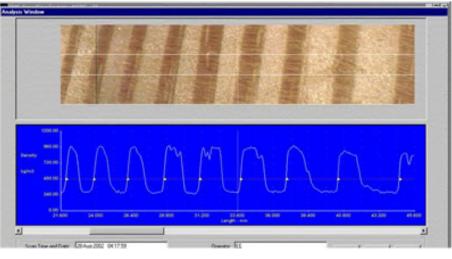
### Densidade da Madeira - tipos

Densidade básica

$$\rho_b = m_{o\%} \div v_{verde}$$



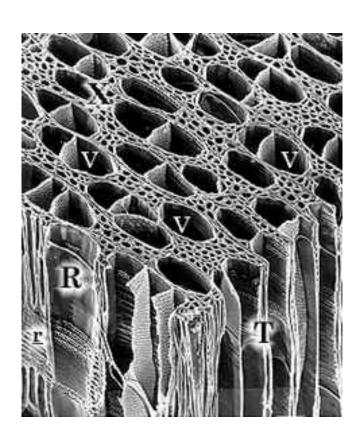
Variação entre espécies

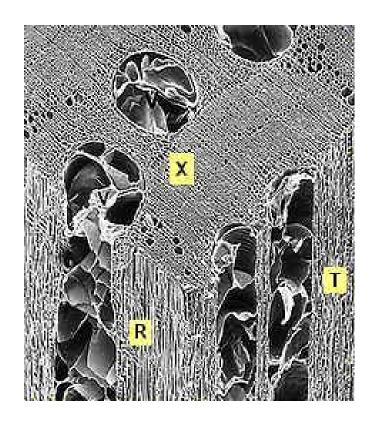

# Densidade da Madeira - determinação

- A determinação da densidade de uma amostra de madeira pode ser realizada determinando-se seu peso e seu volume.
- PESO = pode ser obtido diretamente em balança analítica ou de precisão.

- VOLUME?
- pode ser obtido por diversos métodos, os principais são:
- Método estereométrico
- Métodos por deslocamento :
- Imersão da peça em água
- Método de pesagem

# Densidade da Madeira: densitometros




- Fatores que afetam a densidade:
- 1. Espécie
- 2. Teor de Umidade
- 3. Lenho Inicial e Lenho Tardio
- 4. Posição no Tronco
- 5. Influências Externas

# Densidade da Madeira - tipos

#### Espécie:





# Balsa – menor densidade 150 kg/m3



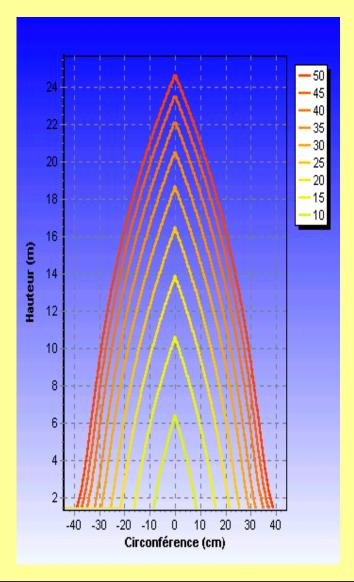


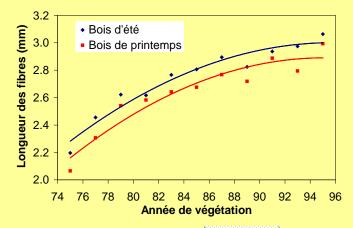
•24

# Maiores densidades

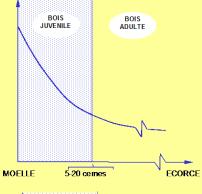


Acacia peuce – densidade básica1.372 Kg.m-3

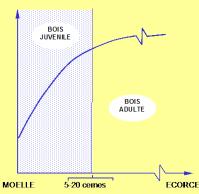




Lysiphyllum carroniidensidade básica 1.390 Kg.m-3

Lenho Inicial e Lenho Tardio




#### ✓ Madeira Juvenil x Madeira Adulta






Angle des microfibrilles Retrait longitudinal Taux d'humidité Angle du fil



Densité du bois Longueur des fibres Résistance Épaisseur des parois Retrait tangentiel Pourcentage de bois d'été

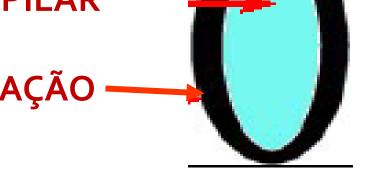


- Fatores que afetam a densidade:
- Influências Externas
- Fatores de crescimento como o clima, tipo de solo, altitude, umidade do solo, espaçamento e associação de espécies.
- Podem ainda ser motivados por aplicação de técnicas silviculturais como: adubação, poda, desbaste, densidade do povoamento, entre outros.

- •Classificação das madeiras em relação a **Densidade Básica** Kg.m<sup>-3</sup>
  Ou g.cm<sup>-3</sup>:
- •Leves abaixo de 500 Kg.m<sup>-3</sup>
- •Médias de 500 a 720 Kg.m<sup>-3</sup>
- •Altas acima de 720 Kg.m<sup>-3</sup>

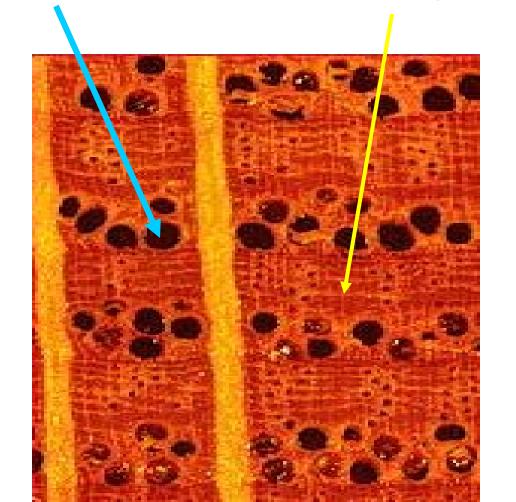
# Água na madeira

 A umidade exerce influência em grande parte das propriedades de resistência da madeira, afeta:


- Trabalhabilidade,
- Poder calorífico,
- Susceptibilidade ao ataque de fungos,
- Dimensões,
- Resistência

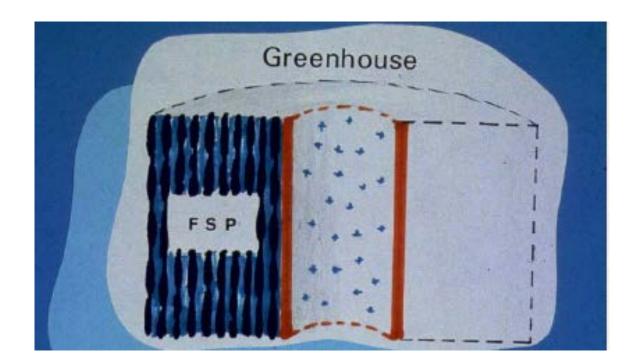
### **Umidade**

A água contida na madeira pode ser classificada em dois tipos:


ÁGUA LIVRE OU CAPILAR

ÁGUA DE IMPREGNAÇÃO




# Umidade

ÁGUA LIVRE OU CAPILAR ÁGUA DE IMPREGNAÇÃO



#### Umidade

- ÁGUA DE IMPREGNAÇÃO
- Ponto de Saturação das Fibras (PSF)
- Tem grande importância prática, é atingido em média, quando a quantidade de água na madeira é de 30%.



### Teor de Umidade

 O teor de umidade de uma madeira é a relação entre o peso de água contido em seu interior e o seu peso em estado completamente seco, expresso em porcentagem;

- Onde:
- U = teor de umidade da madeira (%)
- Pu = peso da madeira úmida (%)
- Po = peso da madeira seca (o% de umidade g)

### Determinação do Teor de Umidade

 Método de pesagem antes e depois de secagem em estufa à temperatura de 103 ± 2°C, até que fique completamente seca.





- Método do uso de aparelhos elétricos
- Outros métodos











### Método do uso de aparelhos elétricos



Até 28% máximo

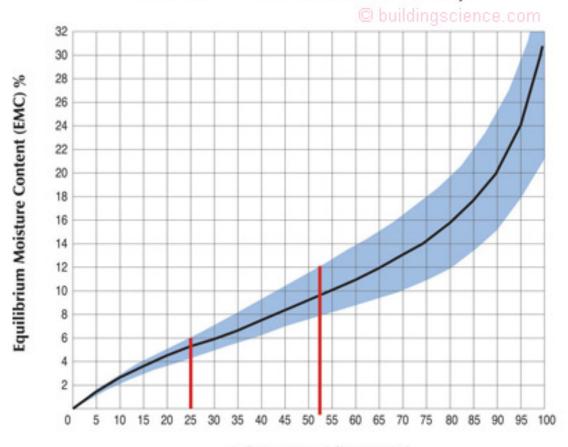
# UMIDADE DE EQUILÍBRIO DA MADEIRA

- A madeira é um material *higroscópico*.
- Higroscopicidade é a capacidade de absorver água e mante-la na sua estrutura, dentro da parede celular.

- Se uma madeira verde é colocada em uma estufa a alta temperatura, após um certo tempo, toda água é evaporada (água capilar e de impregnação).
- A madeira perde peso e volume (contrai) e o teor de umidade chega a zero.

# UMIDADE DE EQUILÍBRIO DA MADEIRA

- Retirando-se a madeira da estufa e colocando-a em contato com o ambiente, ela volta a adquirir água.
- A água é retirada do ambiente, ou seja, do vapor de água que existe no ar.

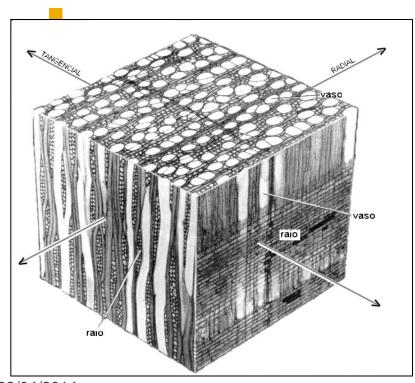

 A madeira é portanto higroscópica, adquire água do ambiente e, com a aquisição de água aumenta seu peso e seu volume (incha).

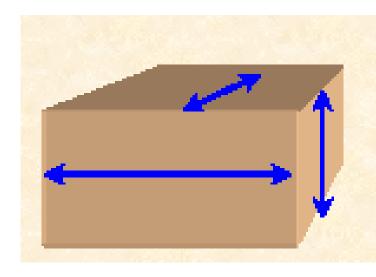
## UMIDADE DE EQUILÍBRIO DA MADEIRA

- A madeira adquire ou perde água dependendo da umidade relativa do ar.
- O teor de umidade em que a madeira se encontra em equilíbrio com a umidade relativa e a temperatura do ar é chamada de Umidade de Equilíbrio da Madeira.

# UMIDADE DE EQUILÍBRIO DA MADEIRA

#### Moisture Content vs. Relative Humidity





•Aproximadamente para cada 4% de Umidade Relativa a madeira aumenta 1% seu teor de umidade.

Relative Humidity (RH) %

- A estas características chamamos de RETRATIBILIDADE DA MADEIRA.
- Quando a madeira é seca abaixo do Ponto de Saturação das Fibras (PSF), aparece a contração,
- A contração é o resultado da retirada da água de impregnação, existente na parede das células.

A madeira é um material anisotrópico, as contrações são diferentes dependendo do eixo anatômico considerado:





- Contração
- A contração volumétrica máxima pode ser obtida pela fórmula:
  - ßmax = <u>Vu Vo</u> x IOO(%)
     Vu

Onde:

- ßmax = máxima contração volumétrica (%)
- Vu = volume da madeira em estado úmido.
- Vo = volume da madeira em estado seco.

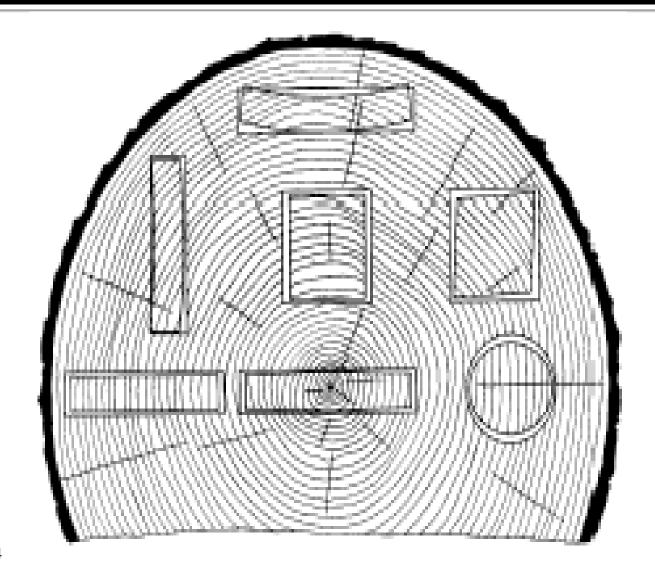
 Para determinação das contrações nas dimensões lineares (tangencial, radial e longitudinal) os valores da equação são substituídos pelos valores lineares correspondentes, na equação geral:

```
• \operatorname{Bmax} = \operatorname{Lu-Lo} \times \operatorname{loo}(\%)
```

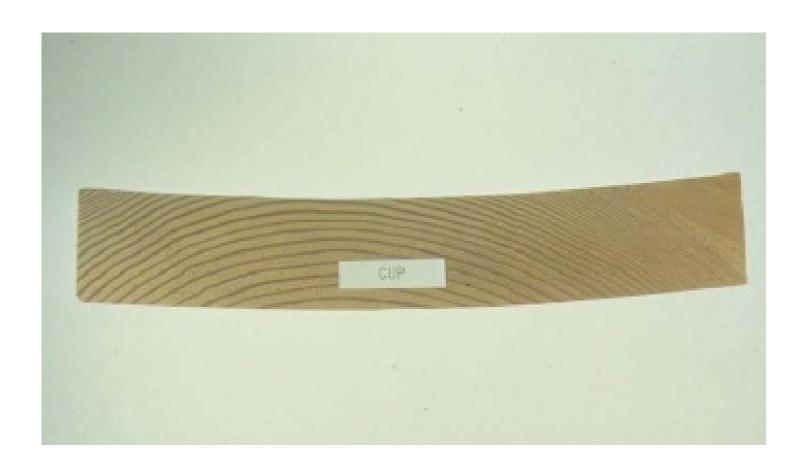
- Lu

 A diferença de contração nos diferentes eixos é chamada de *Anisotropia de Contração* e tem grande importância prática:

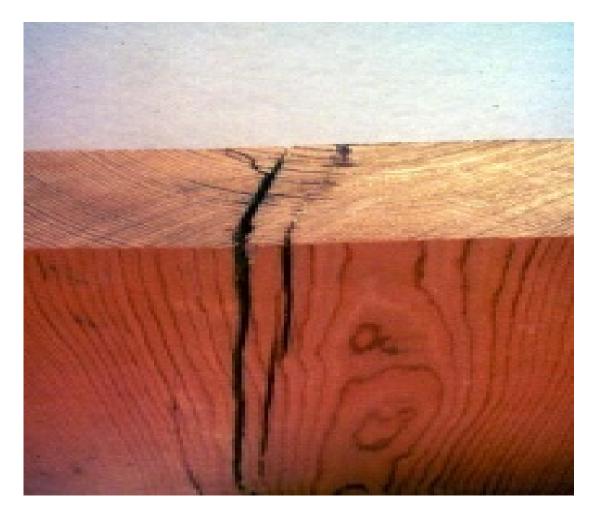
| <b>ESPECIE</b> |              | CONTRAÇÃO |            |                        |     |
|----------------|--------------|-----------|------------|------------------------|-----|
|                | ßl           | ßr        | ßt         | $\mathbf{B}\mathbf{v}$ | Ac  |
| Balsa          | 0,3          | 3,0       | 3,5        | 7,1                    | 1,2 |
| <b>Populus</b> | 0,7          | 3,0       | 7,1        | 11,8                   | 2,4 |
| Cedro          | 0,1          | 4,0       | 6,0        | 12,0                   | 1,5 |
| Pinho          | 0,1          | 4,0       | 6,0        | 13,0                   | 2,0 |
| <b>Pinus</b>   | 0,4          | 4,4       | 7,7        | 12,0                   | 1,7 |
| <b>Imbuia</b>  | 0,1          | 2,7       | 6,3        | 9,6                    | 2,3 |
| Peroba         | 0,1          | 4,0       | <b>7,0</b> | 11,0                   | 1,8 |
| Sucupira       | a <b>0,1</b> | 5.3       | 8,4        | 15,5                   | 1,6 |


 O máximo inchamento de uma madeira é dado pela diferença entre suas dimensões em estado saturado (PSF> e suas dimensões em estado absolutamente seco.

Vo


$$\beta t > \beta r >> \beta l$$

$$\alpha t > \alpha r >> \alpha l$$


#### Contração na tora de madeira



## Encanoamento



## Rachadura de topo



## Fissuras na superfície



## Favo de mel



## Colapso




## **Defeitos**





## Manchas e apodrecimento devido a fungos









## Combinação de madeiras...



## Secagem da Madeira





## Utilização adequada!









### Trabalho

- Pesquisar a densidade de 12 diferentes espécies de madeiras
- Classificar em alta, média e baixa densidade.
- Fonte de consulta:
   <a href="http://www.ibama.gov.br/lpf/madeira">http://www.ibama.gov.br/lpf/madeira</a>
- Data de entrega: 09/05/2014