ABRASIVOS

Até século XIX

Abrasivos naturais — esmeril, mineral de cor preta, constituído de 40% óxido de ferro e 60% de óxido de alumínio.

Dureza inferior a 9 Mohs (diamante = 10 Mohs)

Século XX

Abrasivos artificiais, de alta dureza: abrasivos silicosos e aluminosos.

Abrasivos silicosos

Constituído de carboneto de silício, feitos em fornos elétricos, com 9,6 Mohs de dureza. Recomendado para metais de fraca resistência a tração (ferro fundido, latão, cobre, alumínio e materiais não metálicos).

Abrasivos aluminosos

Obtidos pela fusão da bauxita (minério de óxido de alumínio, silício e ferro) em fornos elétricos, obtendo dureza de 9,4 Mohs. Recomendado para metais mais resistentes a tração, como o aço e o bronze fosforoso.

Obs: Carborundum e Norton – empresas atualmente pertencentes ao grupo Saint-Gobain.

• Escolha do abrasivo - propriedades físicas do material a usinar

Rebolos de óxido de alumínio:

Materiais de alta resistência à tração — aço carbono, aço liga, aço rápido, ferro maleável recozido, ferro batido, bronzes, tenazes.

Rebolos de carboneto de silício:

Materiais de baixa resistência à tração — ferro fundido cinzento, ferro fundido em coquilhas (molde metálico de fundição), latão, bronze macio, alumínio, cobre, ligas muito duras, carbonetos cimentados e materiais não metálicos (mármores, pedras, borracha e couro).

AGENTES AGLUTINANTES - LIGAS

A SELEÇÃO DO TIPO DE LIGA DEPENDE DO MATERIAL A SER RETIFICADO, DO TIPO DE OPERAÇÃO E DA PRECISÃO REQUERIDA.

• LIGAS RESINÓIDES

São ligas que se caracterizam por conferirem às ferramentas abrasivas uma elevada resistência e resiliência (resistência ao impacto), pois uma vez polimerizada a liga resinóide, se converte em aglomerante de alta resistência.

Desta forma, as ferramentas abrasivas fabricadas com este tipo de liga podem operar normalmente com velocidade periférica de até 48 m/s, podendo chegar a 100 m/s, dependendo da aplicação e do tipo da construção da liga.

São empregadas em operações de corte, severas de desbaste, de precisão como abertura de canais em ferramentas de corte (brocas, fresas, machos, etc)

• LIGAS VITRIFICADAS

Este tipo de liga é constituída de materiais naturais como argila, quartzo e feldspato, e após combinadas quimicamente, e submetidas a temperaturas de até 1200°C, formam uma estrutura vitrificada de extrema rigidez, porém frágil a impactos e grandes pressões de trabalho.

Possui a característica de friabilidade no corte (menor queima da peça-obra) e manutenção de seu perfil de corte por mais tempo que as ferramentas com ligas resinóides, sendo mais indicada para operações de precisão como as de acabamento, afiação de ferramentas, retificação de eixos comando, virabrequins e retificação de peças com perfis complexos.

PADRÕES GRANULOMÉTRICOS

CAMIASSOCIAÇÃO DOS FABRICANTES DE ABRASIVOS REVESTIDOS, LIXAS (USA);

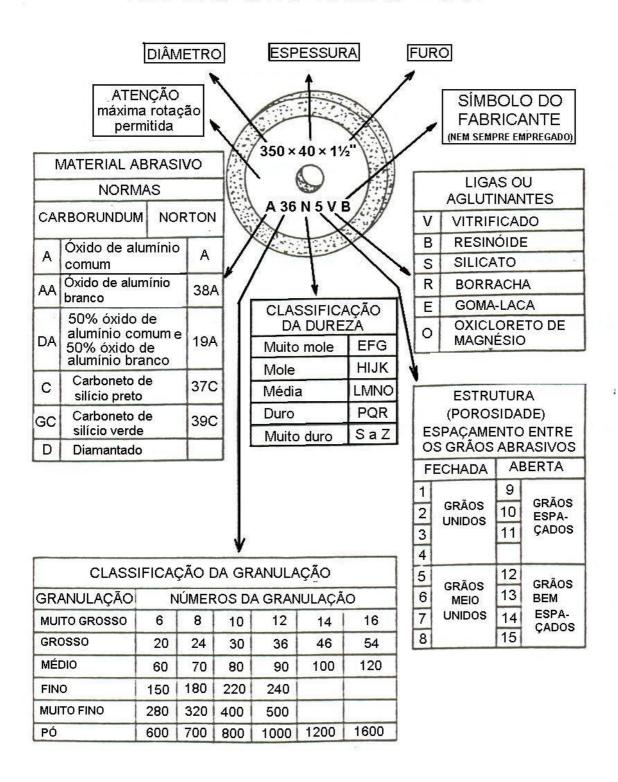
FEPAFEDERAÇÃO EUROPÉIA DOS FABRICANTES DE PRODUTOS ABRASIVOS:

JISSISTEMA INDUSTRIAL JAPONÊS:

MICRA ...MICRONS.

ABRASIVO					REBOLO		LIGAÇÃO	
TIPO MATERIAL	CÓDIGO LETRA	DUREZA daN/mm²	TAMANHO		DUREZA	TEXTURA OU	AGENTE	USO
			PADRÃO	VALOR	GRAU	CONCENTRAÇÃO	AGLUTINANTE	
ÓXIDO NATURAL DE ALUMÍNIO	А	2200	MESH	10 a 400 muito muito grosso fino	D a S macio duro	0 a 12 fechada aberta	Cerâmica V Resina Art. B	Aço até HLS
CARBONETO DE SILÍCIO	С	2480	MESH	10 a 400 muito muito grosso fino	D a S macio duro	0 a 12 fechada aberta	Cerâmica V Resina Art. B	Aço até HLS
NITRITO DE BORO CÚBICO	В	4700	DIN	D7 a D220 fino grosso	Auto afiante	V120 a V180 12% 18%	Resina seco KSS Resina úmida KSS-Y Galvânica GSS Metal sinterizado MSS	HSS e Stellite
DIAMANTE SINTÉTICO	D	7000	DIN ou FEPA	D7 a D220 D46 a D251	Auto afiante	C25 a C150 fechada aberta	Resina Art. R	нм
	†			†	†	†	†	

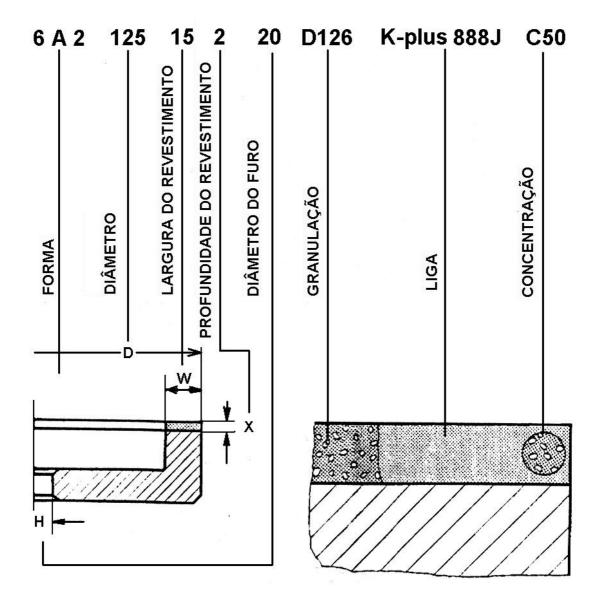
EXEMPLOS DE DENOMINAÇÃO:


10A 80 M 5 V 200×20×20 1C 120 M 8 V 150×15×20

B D126 V120 KSS-RYA 175×15×32×5

D D46 R C75 175×15×32×4

AT411 Processos de corte Prof. Carlos Eduardo Camargo de Albuquerque


REBOLOS DIMENSÕES E CLASSIFICAÇÕES

AT411 Processos de corte

Prof. Carlos Eduardo Camargo de Albuquerque

ESPECIFICAÇÕES REBOLO DIAMANTADO

