JESSÉ AGOSTINHO XAVIER

VARIABILIDADE DA MASSA ESPECÍFICA BÁSICA DE *Pinus taeda* L.
EM DIFERENTES IDADES DE PLANTIO

CURITIBA
MAIO 2009
VARIABILIDADE DA MASSA ESPECÍFICA BÁSICA DE *Pinus taeda* L. EM DIFERENTES IDADES DE PLANTIO

Trabalho de Conclusão de Curso apresentado à Disciplina AT-063 – Estágio Profissionalizante em Engenharia Industrial Madeireira – Curso de Engenharia Industrial Madeireira, Setor de Ciências Agrárias, UFPR, como requisito parcial à conclusão do Curso de Engenharia Industrial Madeireira.

Orientador: Prof. Dr. Jorge Luis Monteiro de Matos

CURITIBA

MAIO 2009
À Noemi, minha esposa, e ao meu filho Herbert Felipe.
À minha mãe, que me ensinou as primeiras letras.
Ao meu pai José Bonifácio (in memoriam).
Ao meu avô Francisco Agostinho (in memoriam).
À minha avó Quitéria Agostinho.
Aos tios Ismael (in memoriam), Elias e Isaque.
Às tias Lúcia, Miriam e Dirce.
Aos meus irmãos.
AGRADECIMENTOS

A Deus, pela vida e pelas graças que me concedeu.
À minha esposa Noemi, presente em todos os momentos, pela paciência, dedicação, apoio e carinho.
Ao Professor Dr. Jorge Luis Monteiro de Matos, pela pronta aceitação, orientação e estímulo.
Ao Professor Dr. Vitor Afonso Hoeflich pelo incentivo.
Ao amigo Engenheiro Eletricista Francisco Scaramella, por toda ajuda, orientação e apoio nos momentos difíceis.
Ao amigo Juliano Weil pelo inestimável auxílio prestado num momento crítico.
Ao M.Sc. José Guilherme Prata, à Engenheira Industrial Madeireira Silvia Aparecida Ângelo Romão e ao Engenheiro Florestal Djeison César Batista pelo auxílio na elaboração deste trabalho.

Aos amigos e colegas Cláudia, Rosilani, Hudson, Jaqueline, Clarice, Thays, Walderson, Edite, Alessandra, Franciele e Marina pela amizade, colaboração neste trabalho, companheirismo e apoio durante o curso, e aos demais colegas que direta ou indiretamente contribuíram para que este objetivo fosse alcançado.
SUMÁRIO

1 INTRODUÇÃO ... 1

2. OBJETIVOS .. 2

2.1 OBJETIVO GERAL .. 2

2.2 OBJETIVOS ESPECÍFICOS ... 2

3 REVISÃO DE LITERATURA .. 3

3.1 ESPÉCIE ESTUDADA ... 3

3.1.1 Pinus taeda .. 3

3.1.1.1 Pinus taeda no Brasil .. 4

3.1.1.2 Importância sócio-econômica ... 6

3.2 MASSA ESPECÍFICA .. 8

3.2.1 Conceito .. 8

3.2.2 Massa específica da madeira ... 9

3.2.2.1 Conceito e determinação ... 9

3.2.2.2 Massa específica básica ... 10

3.2.2.3 Fatores que afetam a massa específica .. 11

4 MATERIAIS E MÉTODOS ... 13

4.1 MATERIAL DE ESTUDO ... 13

4.1.1 Amostragem e preparação do material ... 14

4.2 PROPRIEDADES FÍSICAS .. 16

4.2.1 Determinação da massa específica básica das árvores ... 16

5 RESULTADOS E DISCUSSÃO ... 19

5.1 CARACTERÍSTICAS DAS ÁRVORES AMOSTRADAS .. 19

5.2 MASSA ESPECÍFICA BÁSICA DA MADEIRA ... 19

6 CONCLUSÕES E RECOMENDAÇÕES .. 24

REFERÊNCIAS BIBLIOGRÁFICAS ... 25
1 INTRODUÇÃO

Nas últimas três décadas, o uso e a aplicação da madeira do gênero Pinus sofreu acréscimo expressivo, tornando-a matéria-prima fundamental para movimentar um setor produtivo cuja importância é relevante para a economia do Brasil. Atualmente, o gênero Pinus caracteriza-se como espécie sustentadora de uma cadeia produtiva importante para a região Sul e para o país (BERGER et al, 2007). Dentro desse contexto, a compreensão das propriedades inerentes à madeira de Pinus é fundamental, por permitir a otimização da sua utilização de modo a gerar produtos de melhor qualidade, satisfazendo o consumidor e propiciando retorno apropriado do capital investido pelo produtor.

A massa específica da madeira, que expressa a quantidade de material lenhoso contido em determinado volume de madeira (KLOCK, 1989, p. 18), é reconhecida por diversos autores como uma de suas principais características tecnológicas. Da massa específica dependem diversas outras propriedades da madeira e, através dela, pode-se prever o comportamento da madeira. Assim sendo, torna-se importante conhecer esta propriedade para, entre outras aplicações, planejar ciclos de plantio, tratos silviculturais, etc, visando, como já citado, o aproveitamento ótimo das florestas de Pinus.

O Laboratório de Tecnologia da Madeira (LTM), vinculado ao Departamento de Engenharia e Tecnologia Florestal da Universidade Federal do Paraná, desenvolve atividades de ensino, pesquisa e extensão, além de atuar como via de comunicação entre a universidade, associações apoiadoras e empresas do setor madeireiro.

O LTM é equipado com máquinas e equipamentos para a realização de ensaios de propriedades físicas e mecânicas com madeiras e produtos de madeira. Desde janeiro de 2009 o LTM é acreditado pelo Inmetro para ensaios com madeira, sendo, em sua categoria, o primeiro laboratório de instituição de ensino público federal a pertencer à Rede Brasileira de Ensaios do Inmetro.
2. OBJETIVOS

2.1 OBJETIVO GERAL

O objetivo deste trabalho é determinar a variação da massa específica básica da madeira de Pinus taeda L. proveniente de plantios com diferentes idades.

2.2 OBJETIVOS ESPECÍFICOS

Os objetivos específicos são: 1) Determinar a massa específica básica média da madeira para cada idade de plantio; 2) determinar a variação da massa específica básica da madeira ao longo do fuste; 3) avaliar as implicações da variação do diâmetro para as diferentes idades de plantio; 4) avaliar as implicações da variação da massa específica básica para as diferentes idades de plantio.
3 REVISÃO DE LITERATURA

3.1 ESPÉCIE ESTUDADA

3.1.1 Pinus taeda

O gênero Pinus, segundo informe do United States Department of Agriculture (USDA, 2008), compõe-se de mais de uma centena de espécies nativas de regiões temperadas e tropicais do mundo. Pinus é o nome latino clássico dessas madeiras que podem ser separadas microscopicamente nos grupos branco, amarelo e vermelho. Taeda é a denominação antiga de pinheiros resinosos.

Ainda segundo o USDA (2008), o Pinus taeda, que possui diversas outras denominações, como loblolly pine, black pine, taeda pine, é nativo da planície costeira e piemontesa do sul dos Estados Unidos, ocorrendo desde o sul dos Estados de New Jersey e Delaware para o sul até a região central do Estado da Flórida, ao oeste até o leste do Estado do Texas, e no vale do Rio Mississipi até o extremo sudeste de Oklahoma, Arkansas central e sul do Estado do Tennesse.

Morfologicamente, o Pinus taeda possui casca característica gretada, ramos acinzentados e acículas de coloração verde-escura, reunidas em grupos de três, cujo comprimento pode variar de 15cm a 20 cm. Possui sementes aladas muito pequenas, que são facilmente dispersadas pelo vento. Esta característica gera um dos problemas do cultivo da espécie, pois sua fácil disseminação pode causar a invasão de áreas onde é indesejada (PINUSLETTER, 2008).

No ambiente natural as árvores de Pinus taeda atingem até cerca de 45 m de altura, com diâmetros de até 1,50 m. A madeira possui as seguintes características gerais: alburno amarelo-claro, geralmente largo quando em crescimento secundário; cerne de coloração marrom-avermelhada, sendo que sua formação tem início em árvores com idade próxima aos vinte anos. Em árvores velhas, de crescimento lento, o
alburno costuma ter entre 2 cm e 5 cm de largura. A madeira de Pinus taeda nativa apresenta grã reta e textura média, pode apresentar dificuldades para colagem, é de trabalhabilidade difícil com ferramentas manuais e possui alta resistência ao arrancamento de pregos. É uma madeira pesada, dura e moderadamente resistente ao choque, tem contração moderadamente alta, mas apresenta estabilidade quando a secagem é bem conduzida. A resistência do cerne à degradação é de moderada a baixa. O alburno é mais facilmente impregnável com produtos preservantes (USDA, 2008).

3.1.1.1 Pinus taeda no Brasil

No Brasil, o plantio de Pinus taeda com finalidade comercial foi iniciado em 1948 pelo Serviço Florestal de São Paulo. Foram introduzidas naquele Estado, áreas experimentais de 4 espécies de pinheiros amarelos do sul dos Estados Unidos - Southern Yellow Pines (Pinus palustris, Pinus echinata, Pinus elliottii e Pinus taeda) - sendo que os dois últimos tiveram muito sucesso na sua adaptação e desenvolvimento, tornando-se referenciais na plantação de florestas de coníferas na região sul do país (PINUSLETTER, 2008).

Segundo MEDRADO (2005), as plantações comerciais de Pinus vêm sendo feitas nas regiões Sul e Sudeste há mais de trinta anos, utilizando-se Pinus taeda para produção de matéria-prima para as indústrias de celulose e papel e Pinus elliottii para madeira serrada e extração de resina.

Em função da plantação de extensas áreas com essas espécies, a impressão geral passou a ser de que os atributos do gênero Pinus resumiam-se às características pertencentes a essas duas espécies. (SEBBENN E SHIMIZU, 2008, p 49).

Segundo dados da Sociedade Brasileira de Silvicultura (SBS, 2007) no Brasil a área de florestas plantadas em 2006 totalizou 5,74 milhões ha, sendo 1,82 milhão ha com Pinus. Desse total os estados do Sul possuem aproximadamente 1,4 milhão de ha, sendo 686,5 mil ha no Estado do Paraná, 531 mil ha no Estado de Santa Catarina e 181,4 mil ha no Estado do Rio Grande do Sul.
Por suas boas características na conversão mecânica em chapas e madeira serrada, menor teor de resina contida na madeira e excelentes qualidades das fibras de sua madeira, a grande maioria, cerca de 80% das atuais florestas no Sul do País é constituída de *Pinus taeda* (SBS, 2007).

DOSSA (2008) afirma que nos plantios de *Pinus* a predominância é do sistema de produção com rotação maior que 21 anos. Inicialmente são plantadas 1.667 árvores/ha, sendo feitos desbastes nas idades de 8 anos e 12 anos reduzindo o número de plantas, em média, 40% no primeiro e 30% do remanescente no segundo desbaste. Com a idade de 21 anos efetua-se o corte final, quando restam, em média, 500 árvores/ha. A produção média é de 50 m³ até 70 m³ aos 8 anos, 70 m³ a 120 m³ aos 12 anos e, aos 21 anos, a produção deve ultrapassar 450 m³. A produção anual, em média, é maior que 30 m³/ha.ano.

Esta afirmação está em consonância com a informação de que os ganhos em produtividade volumétricas, resultantes dos trabalhos de pesquisa e melhoramento genético nas florestas plantadas, aumentaram bastante nas últimas décadas, tendo a produtividade média dos plantios de *Pinus* passado de 25 m³/ha.ano em 1990 para 30 m³/ha.ano em 2006, o que representa um crescimento de 20% no período (SBS, 2007).

Pinus taeda pode ser plantado no planalto das Regiões Sul e Sudeste, em solo bem drenado, onde não haja déficit hídrico. Isto inclui as partes serranas do Rio Grande do Sul, Santa Catarina e Paraná, bem como as partes mais chuvosas do sul dos estados de São Paulo e Minas Gerais (SHIMIZU, 2008).

As espécies do gênero *Pinus* plantadas no Brasil que apresentam boa adaptação atingem dimensões de comercialização em menor tempo quando comparado ao crescimento nas regiões de distribuição natural. Entretanto, devido ao rápido crescimento, as características da madeira diferem daquelas obtidas de árvores crescendo em seu habitat natural, apresentando diferentes propriedades principalmente relacionadas à alta porcentagem de lenho juvenil (KLOCK, 1989, p. 01,02).
3.1.1.2 Importância sócio-econômica

Segundo dados da Organização das Nações Unidas para Agricultura e Alimentação (FAO), em 2005 a área total da cobertura florestal brasileira era de cerca de 478 milhões de ha. A área de florestas plantadas, por sua vez, era de cerca de 5,3 milhões de ha, aproximadamente 1% do total de florestas brasileiras.

Entretanto, mesmo com a área reduzida em relação à área de florestas nativas, a estimativa do valor bruto da produção do sistema agroindustrial florestal, segundo as principais cadeias produtivas do setor de florestas plantadas (celulose e papel; indústria madeireira; painéis reconstituídos; siderurgia a carvão vegetal; móveis) no ano de 2007 foi de R$ 49,8 milhões, representando 1,7% do PIB nacional. Com relação à participação na arrecadação de tributos, no ano de 2007 a participação do setor de florestas plantadas na arrecadação de tributos foi de R$ 8,45 bilhões, o que representa 0,9% do total recolhido aos cofres do tesouro Nacional. (ABRAF, 2008).

No ano de 2008, as exportações brasileiras alcançaram US$ 197,9 bilhões. Os produtos industriais respondem por 71,7% desse total, ou US$ 141,9 bilhões. A cadeia produtiva da madeira e seus produtos, papel e celulose, participou com US$ 8,6 bilhões, ou 4,4% do total exportado pelo país. (SECEX, 2009).

Segundo o mesmo informe da SECEX, em termos relativos houve um decréscimo na participação dessa cadeia produtiva na comparação com o ano anterior de 5,1 % para os atuais 4,4 %. Em termos absolutos, entretanto, houve crescimento, passando de US$ 8,1 bilhões para os atuais US$ 8,6 bilhões. (SECEX, 2009).

As atividades da cadeia produtiva na qual estão inseridas as florestas plantadas e os diversos processos industriais da transformação da madeira (Sistema Agroindustrial Florestal) são responsáveis por uma significativa geração de empregos no país. A cadeia produtiva exclusivamente do setor de florestas plantadas (primário e transformação industrial) gerou, no ano de 2007, cerca de 4,6 milhões de empregos divididos entre diretos (656 mil), indiretos (1,8 milhão) e empregos resultantes do efeito-renda (2,1 milhão) (ABRAF, 2008).
Ainda segundo a ABRAF (2008) para o ano de 2018 a perspectiva de investimentos é de aproximadamente R$ 37,2 bilhões, podendo-se estimar que o setor de florestas plantadas terá capacidade de gerar 1,8 milhão de novos empregos entre diretos (219,7 mil), indiretos (577,3 mil) e em outros setores da economia, em virtude do aumento da renda dos trabalhadores empregados - efeito-renda - (1,009 milhão).

Segundo DOSSA (2008), o setor florestal brasileiro envolve mais de 600 municípios e tem um forte apelo social como atividade ambientalmente adequada para a conservação dos solos, dos animais e da água. A produção sustentável de florestas plantadas gera a implementação de medidas tanto governamentais quanto de empresas no sentido de proteger áreas de mananciais, reservatórios de água e outras que tenham como objetivo formar uma consciência ecológica.

Ainda sob a ótica da sustentabilidade e utilização racional de recursos Matos (2002) afirma que a exploração da madeira como matéria-prima consome menos energia na elaboração de produtos, é ambientalmente correta por ser reciclável, indo de encontro à tendência mundial de valorização ambiental. Além disso a exploração adequada dos recursos florestais impõe-se pelo fator econômico, pois para que a produção seja viável é necessária a racionalização no uso integral da matéria-prima e dos meios de produção.

Segundo DOSSA (2008), a previsão de demanda de madeira para o ano de 2010 é de cerca de 240 milhões de metros cúbicos. Para suprir esta demanda é fundamental a participação dos povoamentos de *Pinus*, com o direcionamento do uso da matéria-prima para o processamento industrial em serrarias, laminadoras, fábricas de chapas e para indústrias de celulose e papel.

Os preços da madeira de *Pinus* variam de acordo com o aproveitamento da matéria-prima. Dependendo da qualidade da tora, o preço cobrado pela madeira destinada à serraria e laminação pode ser até vinte vezes maior do que o cobrado pela matéria-prima que se destina à geração de energia e celulose. Na prática, geralmente o destino da matéria-prima não é diferenciado, e a maioria dos compradores de toras de *Pinus* paga um preço determinado pela combinação dos preços das diferentes
categorias. Por exemplo, no 8º ano toras de *Pinus* têm um preço médio equivalente ao valor pago pela matéria-prima predominante para energia e celulose; aos 12 anos o preço equivale à ponderação das proporções de matéria-prima para serraria, energia e celulose; aos 21 anos, quando 92% das toras são de grandes dimensões, o preço é determinado pela matéria-prima apropriada para laminação e madeira serrada (DOSSA, 2008).

3.2 MASSA ESPECÍFICA

3.2.1 Conceito

A massa específica é uma propriedade física intensiva da matéria, ou seja, independe do tamanho da amostra. É definida como a razão entre a massa de um objeto e seu volume (VAN WYLEN et al, 2003).

Seu cálculo é feito através da relação

\[\rho = \frac{m}{V} \]

(Equação 1)

Onde:

- \(\rho \) = massa específica do objeto (g/cm\(^3\)) ou (kg/m\(^3\))
- \(m \) = massa do objeto (g) ou (kg)
- \(V \) = volume do objeto (cm\(^3\)) ou (m\(^3\))

No Sistema Internacional de Unidades a unidade de massa específica é o (kg/m\(^3\)). A unidade usual de massa específica é (g/cm\(^3\)).
3.2.2 Massa específica da madeira

3.2.2.1 Conceito e determinação

A massa específica foi a primeira das propriedades da madeira a ser estudada, com base na ideia de que esta era a propriedade onde melhor se refletia a qualidade da madeira como material de construção. Sob certas hipóteses, a massa específica é um dado útil com referência à qualidade da madeira, e pode ser empregado como elemento de juízo em sua seleção e classificação (KOLMANN, 1959, p. 359).

Burger e Richter (1991, p. 114) afirmam que a massa específica reflete a composição química e o volume de matéria lenhosa por peso, sendo talvez a característica tecnológica mais importante da madeira. Da massa específica dependem estreitamente outras propriedades, tais como a resistência mecânica, o grau de instabilidade dimensional pela perda ou absorção de água.

A massa específica da madeira é expressão da média real da quantidade de material lenhoso contido em determinado volume, sendo que as propriedades de resistência da madeira dependem da quantidade de material lenhoso presente. O aumento das propriedades de resistência em madeira verde e seca com o incremento da massa específica fica demonstrado através da relação entre a massa específica e essas propriedades. Para madeiras de grã direita e livre de defeitos, a massa específica também é um bom indicativo das propriedades mecânicas da madeira (KLOCK, 1989, p. 18).

O cálculo da massa específica da madeira é efetuado com a utilização da Equação 1.

A comparação entre massas específicas, entretanto, somente deve ser feita entre madeiras que tenham o mesmo teor de umidade, tendo sido estabelecidos como pontos de comparação os valores de 0% e 12% de umidade. A massa específica assim determinada chama-se massa específica aparente. (KOLMANN, 1959, p. 359, 373).
A necessidade de especificar valores do teor de umidade na determinação da massa específica decorre do fato de que o peso e o volume da madeira variam de acordo com o teor de umidade. Para comparações válidas, deve-se especificar os valores de referência. O peso, facilmente obtido, é o do material seco em estufa, enquanto o volume verde requer preparação prévia. (DAY et al, 1979, p. 24).

A determinação da massa da amostra é feita através de medições em balança de laboratório. Quanto ao volume da amostra, este pode ser determinado através de diversos métodos como método estereométrico, método por deslocamento (imersão em mercúrio, imersão em água, imersão relativa da peça), método de passagem de raios X, método da passagem de elétrons e métodos ópticos. (ZABLONSKI, 2002, não publicado)

3.2.2.2 Massa específica básica

A massa específica da madeira pode ser determinada de diversas formas e identificada por diferentes denominações. A massa específica é chamada básica quando se relaciona o peso da madeira seca em estufa a 103 °C ± 2 °C e seu volume em estado verde (teor de umidade acima do ponto de saturação das fibras). (KLOCK, 1989, p 17).

A massa específica básica (ρ) é dada pela fórmula seguinte (DAY et al, 1979, p. 24):

\[
\rho = \frac{\text{peso seco da amostra}}{\text{peso do volume de água deslocado}} \frac{\text{amostra verde ou completamente saturada}}
\]

BARRICHELO e SHIMOYAMA (1989) referem-se à massa específica básica da madeira como densidade básica, classificando-a como um dos mais

importantes índices para avaliar a qualidade da madeira, resultante das características anatômicas e composição química da madeira.

A importância da massa específica básica da madeira verifica-se em todos os setores florestais. Na tecnologia relaciona-se às características do produto final, como rendimento em celulose, resistências físico-mecânicas do papel, produção e qualidade do carvão, etc. No melhoramento florestal evidencia o potencial de seleção das espécies; no manejo florestal é determinante do tipo de prática a ser aplicada em função do produto final; no inventário florestal relaciona-se à produtividade da floresta em termos de quantidade de madeira seca por hectare (BARRICHELO; SHIMOYAMA, 1989).

O passo fundamental no estudo da massa específica básica relaciona-se ao conhecimento da variabilidade nela provocada por fatores genéticos (gênero, espécie, procedência, etc), fatores do meio (clima, solo, topografia) e fatores silviculturais (espaçamento, fertilização, idade de corte, desbaste, desrama, etc). Também é importante que se conheça, em determinadas situações, a variação da massa específica dentro da árvore (sentido longitudinal e radial), entre madeira juvenil e adulta, entre cerne e alburno, etc (BARRICHELO; SHIMOYAMA, 1989).

3.2.2.3 Fatores que afetam a massa específica

Segundo KLOCK (1989), estão incluídos entre os fatores associados à variação na massa específica a idade, a altura da árvore, os tratamentos silviculturais (poda e desbaste), fertilização, fatores ambientais (sítio, altitude, taxa de crescimento) e principalmente, fatores genéticos, além dos aspectos morfológicos como a porcentagem de lenho tardio e largura dos anéis de crescimento.

Segundo KOLLMANN (1959, p. 374-394), podem ocorrer variações na massa específica dependendo da posição na árvore, quer no sentido radial, quer no sentido longitudinal.

A massa específica média da madeira varia de acordo com a altura do tronco,

Com relação à posição no tronco a massa específica pode: diminuir uniformemente com a elevação da altura no tronco; diminuir na parte inferior do tronco aumentando regularmente para a parte superior; aumentar da base para o topo de forma não uniforme. (PANSHIN & ZEEUW, 1970, apud SIQUEIRA, 2004).

O segundo modelo ocorre, não muito frequentemente porém, em algumas espécies de *Pinus*, sendo o terceiro modelo mais frequente em folhosas. (SIQUEIRA, 2004).

CHIES (2005, p. 22-23) mostra que para *Pinus radiata* a densidade básica aumenta no sentido base-topo e no sentido medula-casca, e, com relação à idade das árvores, afirma que vários autores compartilham a ideia de que a massa específica básica média das árvores de coníferas tende a aumentar com a idade.

4 MATERIAIS E MÉTODOS

4.1 MATERIAL DE ESTUDO

A madeira utilizada neste trabalho foi obtida de árvores de *Pinus taeda* L., provenientes de plantios comerciais de 6 idades diferentes, 8, 9, 10, 11, 16 e 17 anos, localizados na região de Guarapuava, Centro-Oeste do Estado do Paraná.

O clima da região é moderado, subtropical, úmido. Invernos com geadas e até neves. A temperatura média anual é de 16,8º C. A média máxima é 36º C e a mínima, 6,8º C.

A figura 01 mostra a posição geográfica da região de procedência do material.
As figuras 02 e 03 ilustram aspectos dos plantios e da coleta do material de estudo.

4.1.1 Amostragem e preparação do material

Para coleta das amostras foram selecionados seis sítios tomando por base a idade do plantio.

As árvores a serem analisadas foram selecionadas com base em avaliação
dendrométrica. De cada plantio foram escolhidas 4 árvores na classe equivalente ao diâmetro à altura do peito médio do plantio (DAP médio), 3 árvores abaixo do DAP médio e 3 árvores acima do DAP médio. Foram amostradas 10 árvores por idade, totalizando 60 árvores.

A partir dessas árvores foram retiradas e identificadas com plaquetas plásticas numeradas em sequência, amostras (discos com aproximadamente 5 cm de espessura) em 6 posições relativas à altura comercial (fig 04):

a) base (altura do corte);
b) diâmetro a altura do peito (1,30 m do solo);
c) 25% da altura comercial;
d) 50% da altura comercial;
e) 75% da altura comercial;
f) 100% da altura comercial.

FIGURA 04 – ESQUEMA DE COLETA DE DISCOS AO LONGO DO FUSTE DAS ÁRVORES SELECIONADAS
Como parâmetro para determinação da altura comercial considerou-se o diâmetro mínimo de oito centímetros.

A sequência de operações realizadas encontra-se esquematizado na figura 05.

FIGURA 05 – SEQUÊNCIA DO PROCESSAMENTO E ANÁLISE DO MATERIAL DE ESTUDO

4.2 PROPRIEDADES FÍSICAS

4.2.1 Determinação da massa específica básica das árvores

Para determinação da massa específica básica foram utilizados os discos sem casca, coletados em seis posições ao longo do fuste de cada árvore (base, DAP, 25%, 50%, 75% e 100% da altura comercial).

Os discos permaneceram submersos em água para manutenção do estado de saturação por um período de dez dias, após o que determinou-se o seu volume através do método de pesagem do volume de água deslocado (figura 06).

A execução do método é simples: Toma-se um recipiente com volume de água suficiente para que o corpo de prova possa ser completamente submerso e não
toque as bordas e o fundo. Leva-se o recipiente a uma balança analítica zera-se a balança. O corpo de prova deve estar fixado em um aparato metálico e de extremidade pontiaguda e mais afilada possível, para minimizar interferências na medição. Por intermédio desse aparato o corpo de prova deve ser completamente imerso na água, sem tocar as bordas e o fundo do recipiente. Aplica-se então o princípio de Arquimedes: “a perda aparente de massa de um corpo imerso ou flutuante é igual ao peso do líquido que ele desloca”. Uma vez que o peso específico da água é aproximadamente igual a 1 g/cm³ (SEARS et al, 1984, p. 289) o volume de água deslocado é igual ao seu peso, o que possibilita a leitura diretamente na balança.

FIGURA 06 – DETERMINAÇÃO DO VOLUME DOS DISCOS
FONTE – TRIANOSKI (2008)

FIGURA 07 – SECAGEM DOS DISCOS EM ESTUFA
FONTE – TRIANOSKI (2008)
Após a determinação do volume os discos foram colocados em estufa (figura 07) com temperatura de 103±2 °C onde permaneceram durante o tempo necessário para estabilização do peso, a fim de obter-se o peso completamente seco (figura 08).

![Imagem de discos na estufa e balança]

FIGURA 08 – DETERMINAÇÃO DO PESO SECO
FONTE – TRIANOSKI (2008)

Na determinação da massa específica utilizou-se a relação:

\[\rho = \frac{p_0}{V_u} \text{(g/cm}^3\text{)} \]

Onde:

- \(\rho \) = massa específica básica (g/cm\(^3\))
- \(p_0 \) = massa do disco seco em estufa a 103 ±2 °C (g)
- \(V_u \) = volume do disco em estado saturado (cm\(^3\))

Utilizou-se, para avaliação da variação da massa específica básica ao longo do fuste nas posições relativas, o valor médio determinado em cada posição.
5 RESULTADOS E DISCUSSÃO

5.1 CARACTERÍSTICAS DAS ÁRVORES AMOSTRADAS

Na tabela 01 são apresentados os resultados médios determinados para altura total e altura comercial das árvores amostradas de *Pinus taeda*.

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS DO PLANTIO</th>
<th>IDADE DO PLANTIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 anos</td>
</tr>
<tr>
<td>Altura Total (m)</td>
<td>12,69</td>
</tr>
<tr>
<td>Altura Comercial (m)</td>
<td>8,55</td>
</tr>
<tr>
<td>Diâmetro Médio (cm)</td>
<td>18,9</td>
</tr>
<tr>
<td>Espaçamento (m)</td>
<td>3 x 3</td>
</tr>
<tr>
<td>Tratos Silviculturais</td>
<td>2 podas (3 e 5 anos)</td>
</tr>
</tbody>
</table>

A análise dos resultados da tabela 01, revela que a altura total, a altura comercial e o diâmetro médio das árvores aumentaram com a maior idade do plantio, resultados esperados, embora os plantios tenham sido feitos com diferentes espaçamentos e submetidos a tratos silviculturais distintos.

5.2 MASSA ESPECÍFICA BÁSICA DA MADEIRA

Na tabela 02, são apresentadas as massas específicas básicas médias relativas às posições no tronco, para diferentes idades das árvores amostradas. As variações registradas nesta tabela são evidenciadas graficamente nas figuras 09e 10.

<table>
<thead>
<tr>
<th>IDADE DO PLANTIO</th>
<th>MASSA ESPECÍFICA BÁSICA MÉDIA X POSIÇÃO RELATIVA NO TRONCO (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base</td>
</tr>
<tr>
<td>8 anos</td>
<td>413</td>
</tr>
<tr>
<td>9 anos</td>
<td>396</td>
</tr>
<tr>
<td>10 anos</td>
<td>390</td>
</tr>
<tr>
<td>11 anos</td>
<td>423</td>
</tr>
<tr>
<td>16 anos</td>
<td>409</td>
</tr>
<tr>
<td>17 anos</td>
<td>412</td>
</tr>
</tbody>
</table>
Observa-se na tabela 02 e nas figuras 09 e 10 que os valores médios obtidos para a massa específica básica da madeira de *Pinus taeda* amostrada apresentam comportamento padrão de distribuição de valores em diferentes posições relativas ao fuste das árvores e, à exceção dos plantios de 10 e 11 anos, compatíveis com as idades dos povoamentos.

Na figura 10 verifica-se uma tendência de diminuição da massa específica básica ao longo do fuste, em todas as idades, conferindo a existência de influência do fator altura sobre a massa específica. Por se constituir de madeira mais jovem, a porção superior dos troncos tende a apresentar massa específica mais baixa.

Os plantios de 10 e 11 anos de idade apresentaram comportamento diferente dos demais, conforme evidencia a figura 09, sendo que o plantio de 11 anos de idade apresentou os maiores valores médios de massa específica básica ao longo do fuste, superando os plantios mais velhos (16 e 17 anos).

FIGURA 09 – MASSA ESPECÍFICA BÁSICA MÉDIA POR IDADE DE PLANTIO

![Massa Específica Básica Média por Idade de Plantio](image)
FIGURA 10 – VARIAÇÃO DA MASSA ESPECÍFICA BÁSICA DE *Pinus taeda* L. DE DIFERENTES IDADES PARA DIFERENTES POSIÇÕES RELATIVAS NOS TRONCOS DAS ÁRVORES

FIGURA 11 – VARIAÇÃO DA MASSA ESPECÍFICA BÁSICA DE *Pinus taeda* L. EM DIFERENTES POSIÇÕES RELATIVAS NOS TRONCOS DAS ÁRVORES PARA DIFERENTES IDADES
O plantio de 10 anos de idade foi o que apresentou os menores valores médios, tanto em termos de valor médio geral da massa específica básica, figura 09 e tabela 03, quanto em termos da variação desta massa específica básica ao longo do fuste (figura 11).

TABELA 03 – MASSA ESPECÍFICA BÁSICA MÉDIA POR IDADE DO PLANTIO

<table>
<thead>
<tr>
<th>IDADE DO PLANTIO</th>
<th>MASSA ESPECIFICA BÁSICA MÉDIA (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 anos</td>
<td>376</td>
</tr>
<tr>
<td>9 anos</td>
<td>366</td>
</tr>
<tr>
<td>10 anos</td>
<td>351</td>
</tr>
<tr>
<td>11 anos</td>
<td>390</td>
</tr>
<tr>
<td>16 anos</td>
<td>384</td>
</tr>
<tr>
<td>17 anos</td>
<td>387</td>
</tr>
</tbody>
</table>

Nos plantios de 10 e 11 anos de idade destacam-se duas particularidades que podem ser observados na tabela 01:

- o maior espaçamento entre árvores em relação às demais idades, sendo de 4 x 3m para árvores de 10 anos e de 5 x 5m para árvores de 11 anos;
- o valor do diâmetro médio das árvores destas idades, especialmente do plantio com 10 anos.

O elevado valor de diâmetro médio para a idade de 10 anos indica que, além da maior área disponível, muito possivelmente o sítio de crescimento possui melhor qualidade com relação à oferta de nutrientes, água e profundidade de solo, o que pode ter afetado diretamente o crescimento das árvores. Na ocorrência de boas condições de crescimento a tendência é de que os resultados finais apresentem, na média geral, volumes de madeira elevados, porém com baixa massa específica básica.

Da maior média de massa específica básica apresentada pelo plantio de 11 anos pode-se inferir que, apesar da disponibilidade de uma grande área de crescimento inicial para as árvores (25 m²) a rapidez de crescimento, e por conseqüência, o valor médio da massa específica básica não foi afetada pela área, mas sim, muito provavelmente, pela qualidade do sítio de crescimento. De outro modo: as plantas dispunham de uma maior área para crescimento, porém é possível que a qualidade do
solo com baixa oferta de nutrientes ou condições físicas de penetração de raízes limitadas, tenha levado a uma menor velocidade de crescimento e a um desenvolvimento mais lento das fibras de madeira, resultando em elevados valores médios de massa específica básica.

<table>
<thead>
<tr>
<th>IDADE DO PLANTIO</th>
<th>N° DE AMOSTRAS</th>
<th>MASSA ESPECÍFICA BÁSICA MÉDIA (Kg/m³)</th>
<th>GRUPOS HOMOGÊNEOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 anos</td>
<td>59</td>
<td>351</td>
<td>a</td>
</tr>
<tr>
<td>9 anos</td>
<td>60</td>
<td>366</td>
<td>a, b</td>
</tr>
<tr>
<td>8 anos</td>
<td>60</td>
<td>377</td>
<td>b, c</td>
</tr>
<tr>
<td>11 anos</td>
<td>60</td>
<td>389</td>
<td>c</td>
</tr>
<tr>
<td>16 anos</td>
<td>60</td>
<td>385</td>
<td>c</td>
</tr>
<tr>
<td>17 anos</td>
<td>60</td>
<td>388</td>
<td>c</td>
</tr>
</tbody>
</table>

A observação das tabelas 03 e 04 e das figuras 09 e 10 sugere que, a partir dos 11 anos de idade, a densidade básica média geral das árvores não se altera de modo significativo, mantendo-se estável a partir daí. Sob este ponto de vista para estabelecimento dos períodos de rotação dos plantios a idade de 11 anos seria um indicativo de estabilização das propriedades da madeira.
6 CONCLUSÕES E RECOMENDAÇÕES

Os resultados obtidos neste estudo permitem concluir que:

a) Como resultado natural, a altura total, a altura comercial e o diâmetro médio das árvores aumentaram com o aumento da idade do plantio, apesar dos diferentes espaçamentos e tratos silviculturais.

b) O plantio cuja idade é de 10 anos apresenta elevado valor médio de diâmetro, indicativo de que o sítio de crescimento apresenta uma melhor qualidade. Nesse caso a tendência é de que os resultados finais apresentem, na média geral, volumes de madeira elevados porém com baixa massa específica básica.

c) Da maior massa específica básica média apresentada pelo plantio de 11 anos pode-se inferir que esta foi afetada, muito provavelmente, pela qualidade do sítio de crescimento.

d) A massa específica básica dos plantios de 16 e 17 anos de idade não difere significativamente da massa específica básica da madeira proveniente do plantio de 11 anos de idade. Este comportamento seria indicativo da estabilização das propriedades da madeira, parâmetro importante para definir os períodos de rotação dos plantios.

e) Da conclusão anterior entende-se que a massa específica básica pode, como neste estudo, não sofrer incremento com o aumento da idade do plantio.

f) Recomenda-se que sejam feitos novos estudos, como análise da qualidade dos sítios de crescimento, por exemplo, que possam fornecer melhores subsídios e auxiliar no planejamento de ciclos de plantio.
REFERÊNCIAS BIBLIOGRÁFICAS

